Skip to main content
Utah Water Reseach Lab

Water Resources

The water engineering program is a multidisciplinary graduate program in the College of Engineering and is intended to enable engineers and scientists interested in water to obtain graduate degrees in the areas of fluid mechanics and hydraulics, hydrology, groundwater, and water resources engineering. Core courses and departmental offerings cover these fundamental areas, as well as essential numerical and statistical methods. The water engineering faculty are committed to a strong academic program. The curriculum offered is one of the most comprehensive offered in the U.S. Elements of ongoing research projects are routinely and effectively incorporated into the classes. The program combines training, research, and experience to understand the water issues and water resources management challenges in the United States and internationally. Graduate students can supplement departmental offerings by selecting courses in Mathematics and Statistics; Watershed Sciences; Applied Economics; Economics; Geology; Biological and Irrigation Engineering; Mechanical and Aerospace Engineering; and Plants, Soils, and Climate. This ensures that graduates are well-grounded in the fundamentals, but have a breadth of training and are prepared to contribute professionally to the solution of multidisciplinary local, national, and international water problems. Graduate students in the water program have the opportunity for research support through the Utah Water Research Laboratory (UWRL) while working on theses or dissertations. Excellent laboratory and computing facilities are available. Strong, continuous state and federal research funding keeps the research topics and facilities current. Specialty areas within the program comprise fluid mechanics and hydraulics, hydrology, groundwater, and water resources engineering.

Fluid mechanics and hydraulic engineering covers both fundamental principles and theory and their applications in a variety of engineering fields. Elementary fluid mechanics, based on fundamental principles of conservation of mass, energy, and momentum, is the logical core for all water-related engineering programs. Consequently, other specialties in water engineering study fluid mechanics. Students specializing in fluid mechanics and hydraulics emphasize theoretical fluid mechanics, hydraulic design, numerical methods, and laboratory hydraulic techniques. A good variety and balance of courses supporting research in theoretical fluid mechanics, open channel hydraulics, hydraulic design, transients, sedimentation, municipal water system design, and cavitation are available at the graduate level. Graduates in fluid mechanics and hydraulics find employment in a broad range of professional engineering fields, including consulting, university teaching and research, and state and federal government agencies.

Hydrology is a branch of geoscience concerned with the origin, distribution, movement, and properties of waters of the earth. The hydrologic cycle encompasses the atmosphere, the land surface, lakes and oceans, and the subsurface. Complex, interacting processes at varied time and space scales describe the hydrologic cycle. The concepts and practice of hydrology derive from an integration of field observations, laboratory investigations, and conceptual, mathematical, chemical, statistical, and probabilistic models.

The hydrology program at USU has strength in both theoretical and applied aspects of modern hydrology. Past and present research focuses on a broad spectrum of hydrologic problems. These range from climate modeling, rainfall processes, floods, droughts, terminal lake analyses, soil erosion, and stream water quality models to groundwater contamination characterization and remediation and watershed analyses. A particular emphasis of the program is on an understanding of the global water and energy cycles at nested scales from the hemisphere to the continent to the watershed from a holistic perspective that recognizes the two-way linkages between water reservoirs and fluxes through oceans, atmosphere, land surface and subsurface, and biota.

Groundwater engineering is concerned with fluid flow and transport of contaminants in the subsurface environment. It encompasses the theory of flow in porous media; groundwater hydrology; fate and transport of contaminants in subsurface; and analytical, numerical, and stochastic modeling of such processes. Emphasis is placed on the quantitative analysis of physical and chemical principles governing these processes and on the application of these principles to practical field problems, with all their difficulties related to the complex structure of subsurface formations. Examples of such problems include groundwater supply and management, capture zone analysis, well hydraulics, subsurface cleanup technologies, health risk assessment, and analysis and remediation of groundwater contamination. These problems are of a multidisciplinary nature, and their solutions require a multidisciplinary approach, involving, among others, soil and water chemistry, chemical engineering, and economics. The groundwater professional is an important team player in solving such problems.

Water Resources Engineering prepares engineers to be lead members in water resources planning teams, often charged with coordinating the information and concepts supplied from other disciplines. This need for breadth requires considerable flexibility in the training and arrangement of degree programs.

Water resources engineers draw principles from hydrology, fluid mechanics, hydraulics, environmental engineering, economics, ecology, political science, and other disciplines in the design and operation of projects and nonstructural methods for water resources planning and management. They need a sound understanding of how water storage, delivery, and other management systems function; of criteria used in evaluating and selecting among alternatives; of the techniques of operations research that can be used in systems design; and of the institutional aspects of decision-making in the public sector. A focus area of the program is to develop decision support systems for sustainable water quantity and quality management in the United States and in developing regions of the world. Evolving information sources and tools, such as spatial data sets encoded in geographical information systems, climate forecasts, and cognitive models of the human decision process and societal group dynamics, are being integrated in representative institutional contexts.

An internationally-recognized specialized program has been developed in dam safety risk assessment. Students take classes in dam engineering; hydrology and hydraulics; geotechnical engineering; geology; decision analysis; risk assessment; probability and statistics; and natural resources economics, planning, and management. Students work on practical applications, as well as research projects, for improving the state-of-the art.

Please contact any of the following faculties to get more information: