Skip to main content


The Division of Environmental Engineering is a multidisciplinary graduate program in the College of Engineering and provides coursework and research experience to enable engineers and scientists interested in the environment to obtain graduate degrees relating to potable water and waste treatment, toxic and hazardous wastes management, air quality management, natural systems engineering, and environmental impact assessment. The program provides an interdisciplinary educational approach to fundamental principles that can be applied to  environmental phenomena. Research and training projects are a part of the program and provide the student with appropriate research experience leading to a thesis or dissertation.

Hazardous Waste Management. This specialization has been developed within the broader scope of the environmental engineering program to provide an integrated approach for students with a BS in engineering or natural sciences to deal with the complex issues of toxic and hazardous waste. Aspects of toxic/hazardous waste management, including characterization, treatment, disposal, control, monitoring, and environmental impacts, are dealt with in this program.

Natural Systems Engineering is the study of the interaction of engineered systems with nature, emphasizing impacts to aquatic ecosystems. Techniques include assessment of aquatic habitat through computer simulation and model verification, quantification of aquatic habitat using remote sensing systems, and data analysis and display through integrated statistical and GIS approaches. These tools are used to evaluate impacts on threatened and endangered species, habitat enhancement, instream flow assessments, fish habitat, stream sediment, and hydraulic features.

bioprocess engineering program has been developed as a cooperative effort between the Division of Environmental Engineering and the Biological Engineering Department. This program provides students with specialized coursework and research experience in areas of bioreactor processing of environmental materials and engineering scale-up of biologically-based environmental reactions. Areas of specialization include waste to energy, fermentation, composting, and industrial waste (agricultural and chemical) reuse, recycling, and technologies based on biological processes, as well as engineering optimization of aquatic habitats.

Please contact any of the following faculties to get more information:

William DoucetteWilliam Doucette

Ryan DupontRyan Dupont

Randy MartinRandy Martin

Michael McFarlandMichael McFarland

Joan McLeanJoan McLean

Laurie McNeilLaurie McNeil

Bethany NeilsonBethany Neilson

David StevensDavid Stevens